

Congreso Nacional del Medio Ambiente (Conama 2012) Madrid del 26 al 30 de noviembre de 2012

La energía termosolar en el futuro

José M^a Martínez-Val Peñalosa Javier Muñoz Antón

Grupo de Investigaciones Termoenergéticas Universidad Politécnica de Madrid

Concentrated Solar Power - CSP

 Energía solar concentrada, concepto de planta para producción de energía

Línea más prometedora en CSP

1. Concentrador: Linear Fresnel Reflectors (LFR)

High Concentration Linear Fresnel Reflectors (HCLFR)

□Patentes concedidas al GIT/UPM (ideadas para reducir las ineficiencias de la configuración óptica)

2. Receptor: Multitubo (patentado)

Grados de libertad para optimizar prestaciones (exergía)
Selección de fluido; CO2 (+ sales para conexión y BOP)

3. Ciclos de potencia

□Rankine agua/vapor (primera fase)

Joule–Brayton peri-crítico, regenerativo (patente en trámite)

4. Almacenamiento térmico

Desde Sales (convencional) a Gas + lechos cerámicos

La energía termosolar en el futuro

1. Concentrador: Linear Fresnel Reflectors

Configuraciones Fresnel

Central Linear Fresnel Reflector (LFR)

- Only one linear absorber in the centre of the solar field (all mirrors of the array aim at a unique receiver)
- The receiver must be horizontal, or slightly tilted for East West configurations

Configuraciones Fresnel

Central Linear Fresnel Reflector (LFR)

□ Full CLFR

- All mirrors in the solar field alternate their tilt pointing to one or another receiver, so that they may be placed closer together
- Receivers may be horizontal or vertical

All the mirrors alternating inclinations pointing to one or another receiver

Configuraciones Fresnel

Central Linear Fresnel Reflector (LFR)

- CLFR hybrid
 - Only the central mirrors of the solar field alternate their tilt pointing to one or another receiver, so that they may be placed together
 - Receivers may be horizontal or vertical as well

Inefficiencies and efficiencies

Optical Efficiency

 $\eta_{optical} = \frac{Rays \ incident \ in \ the \ receiver}{Total \ rays}$

Energy Efficiency

 $\eta_{energy} = \frac{\textit{Incident energy in the receiver}}{\textit{DNI} \cdot \textit{Primary mirrors surface}}$

Useful Energy Efficiency

 $\eta_{useful\,energy} = \frac{Incident\,energy\,in\,the\,receiver\,\left(Flux \ge 10 \ \frac{kW}{m^2}\right)}{DNI \cdot Primary\,mirrors\,surface}$

The best efficiency parameter to optimize the configuration is the useful energy efficiency

Comparative analysis

Annual Useful Energy Efficiency:

CLFR-full Horizontal Receiver < CLFR-hybrid Horizontal Receiver < HCLFR Horizontal Receiver

□Useful energy efficiency is higher for f=0.72

□It is an adequate parameter for the selection of the optimum configurations

State of the art

Optimization of the solar field

- For 20 sun-eq concentration, saturation is achieved at around 21 mirrors
- For 10 sun-eq, it is achieved for fewer mirrors than 15
- Fresdemo and Puerto Errado designs can be improved importantly

The optimum design is achieved when the solar field width is double than the receiver height (20sun-eq)

Conclusions on mirror field design

Optimum design variables depend more on the concentration required than on the orientation and other factors

Optimization	For 10 sun-eq	For 20 sun-eq
Filling factor	58-66%	66-72%
Field width/receiver height	1.6-1.8	1.9-2.1
Number of mirrors	<15	~21

A final design should be done coupling optical and thermal processes

La energía termosolar en el futuro

2. Receptor: Multitubo

Tube-bundle receiver capturing beam

Linear receiver thermal performance

Evolution of the fluid temperature (Therminol VP1) along the collector length for a set of linear collectors receiving the same total power, with different radiation intensities and lengths. Intensity goes from 5 to 25 kW/m², corresponding to lengths varying from 500 m from the former to 100 m for the latter

Maximum exergetic efficiency

An example: receiver Width= 50 cm. Fluid : Therminol VP1

La energía termosolar en el futuro

3. Ciclo de potencia: Brayton – Joule

Families of cycles

c = pressures ratio= Phigh/Plow

Regenerative Brayton cycle

Brayton integrated in a CO2 solar plant

Close-to-critical point CO2

Close-to-critical regenerative Brayton

A new design window for linear receivers

Coupling the heat carrier fluid from the receiver to a new family of Brayton cycles. The case for CO2

Real turbomachinery

Maximum specific work (w) is near to the maximum cycle efficiency (η) than in the case of real turbomachinery

Real turbomachinery: w·n Vs. p

Cycle efficiency (ρ) and specific work (w) product shows an adequate tendency to a preliminary design:

Acoplamiento receptor lineal y ciclo Brayton

- Rendimiento del conjunto 'receptor+ciclo de potencia' con CO2:
 - □ Entrada turbina 355°C/70bar; Salida 45°C/30bar

Acoplamiento receptor lineal y ciclo Brayton

Receiver Width= 50 cm. Fluid : Carbon Dioxide

Joule-Brayton full supercritical

State-of-the-art: studied configurations

Example: two regenerators cycle with CO2 for nuclear power plants

Joule-Brayton full supercritical

Comparison

Cycle type	Peri-critical	Supercritical with
		one regenerator
Turbine intlet T (°C)	500	500
Turbine inlet P (bar)	100	250
Tubine outlet P (bar)	50	75
Pressure ratio	2	3,32
Coldest cycle T (°C)	35	35
Cycle efficiency (%)	37	39
Orientative conditions	For solar thermal	For nuclear power
	power plants	plants

La energía termosolar en el futuro

4. Almacenamiento

The challenge of energy storage

- Imagine an energy storage for wind energy based on pumping/turbining water: 1 MWh
- Assume a 100 m tower with a reservoir on top
- 1 MWh = $3.6e09 \text{ J} = m(\text{kg}) \cdot 9.8 \cdot 100 >$ m= $3.6e06 \text{ kg} = 3,600 \text{ m}3 = 30\text{m} \cdot 30\text{m} \cdot 4\text{m}$
- The same gross energy by heating water 50°C
- 3.6e09 J= m(kg)·4.16e03(J/kg.K)·50(K) = $m \cdot 2.1e05 > m = 17,300 \text{ kg} = 17,3 \text{ m}3$
- A factor of 200 ! (with efficiencies > 100 !)

Tanques de lecho fluido con elevado ratio superficie/masa

Sequential operation of tanks

Elongated pebble bed

Macro problem of gas-TES

- High pressure is mandatory for reducing pumping power and increasing heat transfer
- As in any storage tank, the product P·V is a lumped parameter of mechanical requirements, agraviated by high T

Elongated tanks seem to be the right solution

- Tank thermal insulation likely is the critical point for attaining high storage efficiency.
- Regenerative Brayton cycles can be tuned to lower max T and P, keeping good features

Gracias por su atención

